Case study: sort.Interface
In this section, we deepen the concepts introduced in the previous sections on interfaces with a more extensive example from the Go standard library.
The interface Interface
is used for various sorting routines in the sort package.
This interface describes a collection with a length where elements can be compared and swapped.
As usual, we define a Mem
predicate to abstract memory access to the collection.
We extend the interface with a View
method, abstracting the collection to a sequence so that we can specify the methods in terms of their effect on the abstracted data type.
// https://cs.opensource.google/go/go/+/refs/tags/go1.23.6:src/sort/sort.go;l=118
type Interface interface {
// @ pred Mem()
// @ ghost
// @ requires acc(Mem(), _)
// @ decreases
// @ pure View() (ghost seq[any])
// Len is the number of elements in the collection.
// @ requires acc(Mem(), 1/1024)
// @ ensures acc(Mem(), 1/1024)
// @ ensures res == len(View())
// @ decreases len(View())
Len() (res int)
// Less reports whether the element with index i
// must sort before the element with index j.
//
// If both Less(i, j) and Less(j, i) are false,
// then the elements at index i and j are considered equal.
// Sort may place equal elements in any order in the final result,
// while Stable preserves the original input order of equal elements.
//
// Less must describe a transitive ordering:
// - if both Less(i, j) and Less(j, k) are true, then Less(i, k) must be true as well.
// - if both Less(i, j) and Less(j, k) are false, then Less(i, k) must be false as well.
//
// Note that floating-point comparison (the < operator on float32 or float64 values)
// is not a transitive ordering when not-a-number (NaN) values are involved.
// See Float64Slice.Less for a correct implementation for floating-point values.
// @ ghost
// @ requires acc(Mem(), _)
// @ requires 0 <= i && i < len(View())
// @ requires 0 <= j && j < len(View())
// @ decreases len(View())
// @ pure LessSpec(i, j int) bool
// @ requires acc(Mem(), 1/1024)
// @ requires 0 <= i && i < len(View())
// @ requires 0 <= j && j < len(View())
// @ ensures acc(Mem(), 1/1024)
// @ ensures res == old(LessSpec(i, j))
// @ decreases len(View())
Less(i, j int) (res bool)
// @ ghost
// @ requires acc(Mem(), _)
// @ requires 0 <= i && i < len(View())
// @ requires 0 <= j && j < len(View())
// @ requires 0 <= k && k < len(View())
// @ requires LessSpec(i, j) && LessSpec(j, k)
// @ ensures acc(Mem(), _)
// @ ensures old(LessSpec(i, k))
// @ decreases
// @ LessIsTransitive(i, j, k int)
// @ ghost
// @ requires acc(Mem(), _)
// @ requires 0 <= i && i < len(View())
// @ requires 0 <= j && j < len(View())
// @ requires 0 <= k && k < len(View())
// @ requires !LessSpec(i, j) && !LessSpec(j, k)
// @ ensures acc(Mem(), _)
// @ ensures old(!LessSpec(i, k))
// @ decreases
// @ LessIsCoTransitive(i, j, k int)
// @ ghost
// @ requires acc(Mem(), _)
// @ requires 0 <= i && i < len(View())
// @ ensures acc(Mem(), _)
// @ ensures old(!LessSpec(i, i))
// @ decreases
// @ LessIsIrreflexive(i int)
// @ ghost
// @ requires acc(Mem(), _)
// @ requires 0 <= i && i < len(View())
// @ requires 0 <= j && j < len(View())
// @ requires LessSpec(i, j)
// @ ensures acc(Mem(), _)
// @ ensures old(!LessSpec(j, i))
// @ decreases
// @ LessIsAsymmetric(i, j int)
// Swap swaps the elements with indices i and j.
// @ requires acc(Mem(), 1)
// @ requires 0 <= i && i < len(View())
// @ requires 0 <= j && j < len(View())
// @ ensures acc(Mem(), 1)
// @ ensures let oldView := old(View()) in
// @ let oldi := oldView[i] in
// @ let oldj := oldView[j] in
// @ View() == oldView[i = oldj][j = oldi]
// @ decreases len(View())
Swap(i, j int)
}
A pure and ghost analogue, LessSpec
, of the Less
method is defined so that we can use it in specifications.
To couple them together, the result of calling Less
is equivalent to the result of calling LessSpec
in that state (res == old(LessSpec(i, j))
).
Using the abstraction View
, we can specify what it means to swap the elements with indices i
and j
as:
// Swap swaps the elements with indices i and j.
// @ requires acc(Mem(), 1)
// @ requires 0 <= i && i < len(View())
// @ requires 0 <= j && j < len(View())
// @ ensures acc(Mem(), 1)
// @ ensures let oldView := old(View()) in
// @ let oldi := oldView[i] in
// @ let oldj := oldView[j] in
// @ View() == oldView[i = oldj][j = oldi]
// @ decreases len(View())
Swap(i, j int)
Note we use the sequence update operation to create the sequence oldView[i = oldj][j = oldi]
where we exchange two elements.
Also, we use the binding let v := e1 in e2
to assign the expression e1
to the variable v
in the expression e2
.
The ghost
methods LessIsTransitive
and LessIsCoTransitive
formalize the requirements described in the docstring:
// Less reports whether the element with index i
// must sort before the element with index j.
//
// If both Less(i, j) and Less(j, i) are false,
// then the elements at index i and j are considered equal.
// Sort may place equal elements in any order in the final result,
// while Stable preserves the original input order of equal elements.
//
// Less must describe a transitive ordering:
// - if both Less(i, j) and Less(j, k) are true, then Less(i, k) must be true as well.
// - if both Less(i, j) and Less(j, k) are false, then Less(i, k) must be false as well.
//
Furthermore, the ordering described by Less
must be irreflexive (no element must be sorted before itself) and asymmetric (if an element a
must sort before another element b
then the element b
must not also sort before a
).
To implement the interface, one must implement these ghost methods, or equivalently prove the lemmas that together imply that the relation described by Less
is a strict weak ordering.
// @ ghost
// @ requires acc(Mem(), _)
// @ requires 0 <= i && i < len(View())
// @ requires 0 <= j && j < len(View())
// @ requires 0 <= k && k < len(View())
// @ requires LessSpec(i, j) && LessSpec(j, k)
// @ ensures acc(Mem(), _)
// @ ensures old(LessSpec(i, k))
// @ decreases
// @ LessIsTransitive(i, j, k int)
// @ ghost
// @ requires acc(Mem(), _)
// @ requires 0 <= i && i < len(View())
// @ requires 0 <= j && j < len(View())
// @ requires 0 <= k && k < len(View())
// @ requires !LessSpec(i, j) && !LessSpec(j, k)
// @ ensures acc(Mem(), _)
// @ ensures old(!LessSpec(i, k))
// @ decreases
// @ LessIsCoTransitive(i, j, k int)
// @ ghost
// @ requires acc(Mem(), _)
// @ requires 0 <= i && i < len(View())
// @ ensures acc(Mem(), _)
// @ ensures old(!LessSpec(i, i))
// @ decreases
// @ LessIsIrreflexive(i int)
// @ ghost
// @ requires acc(Mem(), _)
// @ requires 0 <= i && i < len(View())
// @ requires 0 <= j && j < len(View())
// @ requires LessSpec(i, j)
// @ ensures acc(Mem(), _)
// @ ensures old(!LessSpec(j, i))
// @ decreases
// @ LessIsAsymmetric(i, j int)
Having specified the interface, we can specify and verify other functions from the sort
package, such as
IsSorted.
Previously, we have seen similar functions for concrete types, such as integer arrays or slices.
Now we have a function that works for any type implementing Interface
.
// IsSorted reports whether data is sorted.
// @ requires data != nil
// @ requires acc(data.Mem(), 1/2)
// @ ensures acc(data.Mem(), 1/2)
// @ ensures res == forall j int :: {data.LessSpec(j, j-1)} 0 < j && j < len(data.View()) ==> !data.LessSpec(j, j-1)
// @ decreases
func IsSorted(data Interface) (res bool) {
n := data.Len()
if n <= 1 { // added if s.t. the loop invariant can be established
return true
}
// @ invariant acc(data.Mem(), 1/2)
// @ invariant 0 <= i && i < len(data.View())
// @ invariant forall j int :: {data.LessSpec(j, j-1)} i < j && j < len(data.View()) ==> !data.LessSpec(j, j-1)
// @ decreases i
for i := n - 1; i > 0; i-- {
if data.Less(i, i-1) {
return false
}
}
return true
}
Example implementation: IntSlice
As an example, we implement Interface
for integer slices.
type IntSlice []int
The Mem
predicate wraps access to the slice.
/*@
pred (s IntSlice) Mem() {
acc(s)
}
@*/
We define Less
as s[i] < s[j]
.
This order is transitive, cotransitive, irreflexive, and asymmetric for integers.
No proof annotations are required for this.
// @ ghost
// @ requires acc(s.Mem(), _)
// @ requires 0 <= i && i < len(s.View())
// @ requires 0 <= j && j < len(s.View())
// @ decreases len(s.View())
// @ pure func (s IntSlice) LessSpec(i, j int) (res bool) {
// @ return unfolding acc(s.Mem(), _) in s[i] < s[j]
// @ }
// @ requires acc(s.Mem(), 1/1024)
// @ requires 0 <= i && i < len(s.View())
// @ requires 0 <= j && j < len(s.View())
// @ ensures acc(s.Mem(), 1/1024)
// @ ensures res == old(s.LessSpec(i, j))
// @ decreases
func (s IntSlice) Less(i, j int) (res bool) {
// @ unfold acc(s.Mem(), 1/1024)
res = s[i] < s[j]
// @ fold acc(s.Mem(), 1/1024)
return
}
// @ ghost
// @ requires acc(s.Mem(), _)
// @ requires 0 <= i && i < len(s.View())
// @ requires 0 <= j && j < len(s.View())
// @ requires 0 <= k && k < len(s.View())
// @ requires s.LessSpec(i, j) && s.LessSpec(j, k)
// @ ensures acc(s.Mem(), _)
// @ ensures s.LessSpec(i, k)
// @ decreases
// @ func (s IntSlice) LessIsTransitive(i, j, k int) {}
// @ ghost
// @ requires acc(s.Mem(), _)
// @ requires 0 <= i && i < len(s.View())
// @ requires 0 <= j && j < len(s.View())
// @ requires 0 <= k && k < len(s.View())
// @ requires !s.LessSpec(i, j) && !s.LessSpec(j, k)
// @ ensures acc(s.Mem(), _)
// @ ensures old(!s.LessSpec(i, k))
// @ decreases
// @ func (s IntSlice) LessIsCoTransitive(i, j, k int) {}
// @ ghost
// @ requires acc(s.Mem(), _)
// @ requires 0 <= i && i < len(s.View())
// @ ensures acc(s.Mem(), _)
// @ ensures old(!s.LessSpec(i, i))
// @ decreases
// @ func (s IntSlice) LessIsIrreflexive(i int) {}
// @ ghost
// @ requires acc(s.Mem(), _)
// @ requires 0 <= i && i < len(s.View())
// @ requires 0 <= j && j < len(s.View())
// @ requires s.LessSpec(i, j)
// @ ensures acc(s.Mem(), _)
// @ ensures old(!s.LessSpec(j, i))
// @ decreases
// @ func (s IntSlice) LessIsAsymmetric(i, j int) {}
The abstraction function View
converts the slice to a sequence.
With the helper function viewAux
we recursively construct the sequence while building up the postcondition that we have already converted the current prefix.
// @ ghost
// @ requires acc(s.Mem(), _)
// @ ensures len(res) == len(s)
// @ ensures forall i int :: {res[i]} {s[i]} 0 <= i && i < len(res) ==> unfolding acc(s.Mem(), _) in res[i] == s[i]
// @ decreases
// @ pure func (s IntSlice) View() (ghost res seq[any]) {
// @ return unfolding acc(s.Mem(), _) in s.viewAux(0, seq[any]{})
// @ }
// @ ghost
// @ requires acc(s, _)
// @ requires 0 <= i && i <= len(s)
// @ requires len(prefix) == i
// @ ensures len(res) == len(s)
// @ requires forall i int :: {prefix[i]} {s[i]} 0 <= i && i < len(prefix) ==> prefix[i] == s[i]
// @ ensures forall i int :: {res[i]} 0 <= i && i < len(res) ==> res[i] == s[i]
// @ decreases len(s) - i
// @ pure
// @ func (s IntSlice) viewAux(i int, prefix seq[any]) (ghost res seq[any]) {
// @ return i == len(s) ? prefix : s.viewAux(i + 1, prefix ++ seq[any]{s[i]})
// @ }
Len
and Swap
are implemented straightforwardly as the corresponding operations on the IntSlice
.
We only have to add fold
and unfold
statements to convert between the Mem
predicate and the permissions to the slice.
// @ requires acc(s.Mem(), 1/1024)
// @ ensures acc(s.Mem(), 1/1024)
// @ ensures res == len(s.View())
// @ decreases
func (s IntSlice) Len() (res int) {
// @ unfold acc(s.Mem(), 1/1024)
res = len(s)
// @ fold acc(s.Mem(), 1/1024)
return
}
// @ requires acc(s.Mem(), 1)
// @ requires 0 <= i && i < len(s.View())
// @ requires 0 <= j && j < len(s.View())
// @ ensures acc(s.Mem(), 1)
// @ ensures let oldView := old(s.View()) in
// @ let oldi := oldView[i] in
// @ let oldj := oldView[j] in
// @ s.View() == oldView[i = oldj][j = oldi]
// @ decreases
func (s IntSlice) Swap(i, j int) {
// @ unfold acc(s.Mem(), 1)
s[i], s[j] = s[j], s[i]
// @ fold acc(s.Mem(), 1)
}
As the contracts for the implementation methods match the contracts for the interface methods we do not have to give an implementation proof.
// @ IntSlice implements Interface
Having implemented Interface
, we may now call IsSorted(x)
with IntSlice
values:
func client() {
var x Interface
var s IntSlice = []int{1, 2, 2}
// @ fold s.Mem()
// @ assert len(s) == 3
x = s
b := IsSorted(x)
// @ assert b
// @ assert len(x.View()) == 3
// @ assert x.LessSpec(0, 1)
// @ assert !x.LessSpec(1, 2)
// @ assert x.LessSpec(0, 2)
// @ assert x.View()[1] == x.View()[2]
// @ assert typeOf(x.View()[1]) == type[int]
if v, ok := x.(IntSlice); ok {
// @ assert len(v) == 3
} else {
// @ assert false
}
}
Quiz
Full example
package sort
// Copyright 2009 The Go Authors.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google LLC nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
func client() {
var x Interface
var s IntSlice = []int{1, 2, 2}
// @ fold s.Mem()
// @ assert len(s) == 3
x = s
b := IsSorted(x)
// @ assert b
// @ assert len(x.View()) == 3
// @ assert x.LessSpec(0, 1)
// @ assert !x.LessSpec(1, 2)
// @ assert x.LessSpec(0, 2)
// @ assert x.View()[1] == x.View()[2]
// @ assert typeOf(x.View()[1]) == type[int]
if v, ok := x.(IntSlice); ok {
// @ assert len(v) == 3
} else {
// @ assert false
}
}
// IsSorted reports whether data is sorted.
// @ requires data != nil
// @ requires acc(data.Mem(), 1/2)
// @ ensures acc(data.Mem(), 1/2)
// @ ensures res == forall j int :: {data.LessSpec(j, j-1)} 0 < j && j < len(data.View()) ==> !data.LessSpec(j, j-1)
// @ decreases
func IsSorted(data Interface) (res bool) {
n := data.Len()
if n <= 1 { // added if s.t. the loop invariant can be established
return true
}
// @ invariant acc(data.Mem(), 1/2)
// @ invariant 0 <= i && i < len(data.View())
// @ invariant forall j int :: {data.LessSpec(j, j-1)} i < j && j < len(data.View()) ==> !data.LessSpec(j, j-1)
// @ decreases i
for i := n - 1; i > 0; i-- {
if data.Less(i, i-1) {
return false
}
}
return true
}
// --------- Interface -----------
// https://cs.opensource.google/go/go/+/refs/tags/go1.23.6:src/sort/sort.go;l=118
type Interface interface {
// @ pred Mem()
// @ ghost
// @ requires acc(Mem(), _)
// @ decreases
// @ pure View() (ghost seq[any])
// Len is the number of elements in the collection.
// @ requires acc(Mem(), 1/1024)
// @ ensures acc(Mem(), 1/1024)
// @ ensures res == len(View())
// @ decreases len(View())
Len() (res int)
// Less reports whether the element with index i
// must sort before the element with index j.
//
// If both Less(i, j) and Less(j, i) are false,
// then the elements at index i and j are considered equal.
// Sort may place equal elements in any order in the final result,
// while Stable preserves the original input order of equal elements.
//
// Less must describe a transitive ordering:
// - if both Less(i, j) and Less(j, k) are true, then Less(i, k) must be true as well.
// - if both Less(i, j) and Less(j, k) are false, then Less(i, k) must be false as well.
//
// Note that floating-point comparison (the < operator on float32 or float64 values)
// is not a transitive ordering when not-a-number (NaN) values are involved.
// See Float64Slice.Less for a correct implementation for floating-point values.
// @ ghost
// @ requires acc(Mem(), _)
// @ requires 0 <= i && i < len(View())
// @ requires 0 <= j && j < len(View())
// @ decreases len(View())
// @ pure LessSpec(i, j int) bool
// @ requires acc(Mem(), 1/1024)
// @ requires 0 <= i && i < len(View())
// @ requires 0 <= j && j < len(View())
// @ ensures acc(Mem(), 1/1024)
// @ ensures res == old(LessSpec(i, j))
// @ decreases len(View())
Less(i, j int) (res bool)
// @ ghost
// @ requires acc(Mem(), _)
// @ requires 0 <= i && i < len(View())
// @ requires 0 <= j && j < len(View())
// @ requires 0 <= k && k < len(View())
// @ requires LessSpec(i, j) && LessSpec(j, k)
// @ ensures acc(Mem(), _)
// @ ensures old(LessSpec(i, k))
// @ decreases
// @ LessIsTransitive(i, j, k int)
// @ ghost
// @ requires acc(Mem(), _)
// @ requires 0 <= i && i < len(View())
// @ requires 0 <= j && j < len(View())
// @ requires 0 <= k && k < len(View())
// @ requires !LessSpec(i, j) && !LessSpec(j, k)
// @ ensures acc(Mem(), _)
// @ ensures old(!LessSpec(i, k))
// @ decreases
// @ LessIsCoTransitive(i, j, k int)
// @ ghost
// @ requires acc(Mem(), _)
// @ requires 0 <= i && i < len(View())
// @ ensures acc(Mem(), _)
// @ ensures old(!LessSpec(i, i))
// @ decreases
// @ LessIsIrreflexive(i int)
// @ ghost
// @ requires acc(Mem(), _)
// @ requires 0 <= i && i < len(View())
// @ requires 0 <= j && j < len(View())
// @ requires LessSpec(i, j)
// @ ensures acc(Mem(), _)
// @ ensures old(!LessSpec(j, i))
// @ decreases
// @ LessIsAsymmetric(i, j int)
// Swap swaps the elements with indices i and j.
// @ requires acc(Mem(), 1)
// @ requires 0 <= i && i < len(View())
// @ requires 0 <= j && j < len(View())
// @ ensures acc(Mem(), 1)
// @ ensures let oldView := old(View()) in
// @ let oldi := oldView[i] in
// @ let oldj := oldView[j] in
// @ View() == oldView[i = oldj][j = oldi]
// @ decreases len(View())
Swap(i, j int)
}
// --------- Implementation -----------
type IntSlice []int
/*@
pred (s IntSlice) Mem() {
acc(s)
}
@*/
// @ ghost
// @ requires acc(s.Mem(), _)
// @ ensures len(res) == len(s)
// @ ensures forall i int :: {res[i]} {s[i]} 0 <= i && i < len(res) ==> unfolding acc(s.Mem(), _) in res[i] == s[i]
// @ decreases
// @ pure func (s IntSlice) View() (ghost res seq[any]) {
// @ return unfolding acc(s.Mem(), _) in s.viewAux(0, seq[any]{})
// @ }
// @ ghost
// @ requires acc(s, _)
// @ requires 0 <= i && i <= len(s)
// @ requires len(prefix) == i
// @ ensures len(res) == len(s)
// @ requires forall i int :: {prefix[i]} {s[i]} 0 <= i && i < len(prefix) ==> prefix[i] == s[i]
// @ ensures forall i int :: {res[i]} 0 <= i && i < len(res) ==> res[i] == s[i]
// @ decreases len(s) - i
// @ pure
// @ func (s IntSlice) viewAux(i int, prefix seq[any]) (ghost res seq[any]) {
// @ return i == len(s) ? prefix : s.viewAux(i + 1, prefix ++ seq[any]{s[i]})
// @ }
// @ requires acc(s.Mem(), 1/1024)
// @ ensures acc(s.Mem(), 1/1024)
// @ ensures res == len(s.View())
// @ decreases
func (s IntSlice) Len() (res int) {
// @ unfold acc(s.Mem(), 1/1024)
res = len(s)
// @ fold acc(s.Mem(), 1/1024)
return
}
// @ ghost
// @ requires acc(s.Mem(), _)
// @ requires 0 <= i && i < len(s.View())
// @ requires 0 <= j && j < len(s.View())
// @ decreases len(s.View())
// @ pure func (s IntSlice) LessSpec(i, j int) (res bool) {
// @ return unfolding acc(s.Mem(), _) in s[i] < s[j]
// @ }
// @ requires acc(s.Mem(), 1/1024)
// @ requires 0 <= i && i < len(s.View())
// @ requires 0 <= j && j < len(s.View())
// @ ensures acc(s.Mem(), 1/1024)
// @ ensures res == old(s.LessSpec(i, j))
// @ decreases
func (s IntSlice) Less(i, j int) (res bool) {
// @ unfold acc(s.Mem(), 1/1024)
res = s[i] < s[j]
// @ fold acc(s.Mem(), 1/1024)
return
}
// @ ghost
// @ requires acc(s.Mem(), _)
// @ requires 0 <= i && i < len(s.View())
// @ requires 0 <= j && j < len(s.View())
// @ requires 0 <= k && k < len(s.View())
// @ requires s.LessSpec(i, j) && s.LessSpec(j, k)
// @ ensures acc(s.Mem(), _)
// @ ensures s.LessSpec(i, k)
// @ decreases
// @ func (s IntSlice) LessIsTransitive(i, j, k int) {}
// @ ghost
// @ requires acc(s.Mem(), _)
// @ requires 0 <= i && i < len(s.View())
// @ requires 0 <= j && j < len(s.View())
// @ requires 0 <= k && k < len(s.View())
// @ requires !s.LessSpec(i, j) && !s.LessSpec(j, k)
// @ ensures acc(s.Mem(), _)
// @ ensures old(!s.LessSpec(i, k))
// @ decreases
// @ func (s IntSlice) LessIsCoTransitive(i, j, k int) {}
// @ ghost
// @ requires acc(s.Mem(), _)
// @ requires 0 <= i && i < len(s.View())
// @ ensures acc(s.Mem(), _)
// @ ensures old(!s.LessSpec(i, i))
// @ decreases
// @ func (s IntSlice) LessIsIrreflexive(i int) {}
// @ ghost
// @ requires acc(s.Mem(), _)
// @ requires 0 <= i && i < len(s.View())
// @ requires 0 <= j && j < len(s.View())
// @ requires s.LessSpec(i, j)
// @ ensures acc(s.Mem(), _)
// @ ensures old(!s.LessSpec(j, i))
// @ decreases
// @ func (s IntSlice) LessIsAsymmetric(i, j int) {}
// @ requires acc(s.Mem(), 1)
// @ requires 0 <= i && i < len(s.View())
// @ requires 0 <= j && j < len(s.View())
// @ ensures acc(s.Mem(), 1)
// @ ensures let oldView := old(s.View()) in
// @ let oldi := oldView[i] in
// @ let oldj := oldView[j] in
// @ s.View() == oldView[i = oldj][j = oldi]
// @ decreases
func (s IntSlice) Swap(i, j int) {
// @ unfold acc(s.Mem(), 1)
s[i], s[j] = s[j], s[i]
// @ fold acc(s.Mem(), 1)
}
// @ IntSlice implements Interface